
16 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Many vulnerabilities in today’s soft-
ware products are rehashes of past

vulnerabilities. Developers are often un-
aware of past problems or they are unable
to keep track of vulnerabilities that others
have reported and solved. Interestingly,
this is not because of a scarcity of infor-
mation. In fact, a plethora of information
about past vulnerabilities is available to
developers. Most software development
projects dedicate some effort to docu-
menting, tracking, and studying reported
vulnerabilities. This information is record-
ed in project repositories, such as change
logs in source code version control sys-
tems, bug tracking system entries, and
mailing list communication threads. As
these repositories were created for differ-
ent purposes, it is not straightforward
enough to extract useful vulnerability-
related information. In large projects,
these repositories store vast amounts of
data, oftentimes burying the relevant
information. Therefore, efforts to sum-
marize lessons learned from past vulnera-
bilities in a software project are essentially
non-existent. In the face of growing soft-
ware complexity, it is even more critical to
improve the mental model of the software
developer to sense the possibility of vul-
nerability.

The CWE standardization effort pro-
vides a unified and measureable set of
software weaknesses for use in software
assurance activities [1]. CWE is a commu-
nity-driven and continuously evolving tax-
onomy of software weaknesses. Accor-
ding to [1], the CWE vision is twofold,
enabling:
• A more effective discussion, descrip-

tion, selection, and use of software
security tools and services that can
find weaknesses in source code and
operational systems.

• A better understanding and manage-
ment of software weaknesses related
to architecture and design.

However, the CWE is often compared to
a kitchen sink, as it aggregates weakness
categories from many different vulnerabil-

ity taxonomies, software technologies and
products, and categorization perspectives.
While the CWE is comprehensive, using
its highly tangled web of weakness cate-
gories is a daunting task for stakeholders
in the software development life cycle
(SDLC).

The unique characteristics of a weak-
ness—its preceding design or program-
mer errors, resources/locations that the
weakness occurs in, and the consequences
that follow the weakness (such as unau-
thorized information disclosure, modifica-
tion, or destruction)—are either expressed
together within a single CWE category or
spread across multiple categories. Such
complexity makes it difficult to trace the
information expressed in the CWE to the
information about a discovered vulnera-
bility in multiple project-specific sources
(such as a log of code changes, source
code differences, developer mailing list
discussions around bugs, bug-tracking
databases, vulnerability databases, and
public media releases). Therefore, to facil-
itate CWE use in the study of vulnerabili-
ties, we have developed easy-to-under-
stand templates for each conceptually dis-
tinct weakness type. This template can
then be readily applied to aggregate and
study project-specific vulnerability infor-
mation from source code repositories.

Each template is a collection of con-
cepts related to a single weakness type.
The concepts are identified by extracting
and distilling information from all relevant
CWE categories for a particular weakness
type. Since the concepts in the templates
provide meaning to the usage of certain
words and sentences that describe vulner-
ability information, we call them semantic
templates.

While the CWE is a collection of
abstract categories, the Common
Vulnerability Enumeration (CVE) is an
ever-growing compilation of actual
known information security vulnerabilities
and exposures, as reported by software
development organizations, coordination
centers, developers, and individuals at

large. CVE assigns a common standard
identifier for each discovered vulnerability
to enable data exchange between security
products and provide a baseline for evalu-
ating coverage of tools and services [2].

In this article, we outline the process
of building a semantic template to study
the injection software weakness type. In
recent times, injection is the single most
exploited weakness type. It occurs upon
failure to adequately filter user-controlled
input data for syntax that can have unin-
tended consequences on the program exe-
cution. As stated in CWE-74, a distin-
guishing characteristic of the injection
weakness is that “the execution of the
process may be altered by sending code in
through legitimate data channels, using no
other mechanism” [3]. For example, con-
sider a Web application that accepts user
input to dynamically construct a Web page
that is instantly accessible to other users.
Web blogs, guest books, user comments,
and discussion pages typically provide
such functionality. If the user input that
gets included in the dynamic construction
of a Web page is not appropriately sani-
tized for HTML and other executable syn-
tax (e.g., JavaScript), then active user-cho-
sen Web content (such as redirection to
malicious Web pages) can be injected into
the Web application and later served to
other clients that load the tainted Web
page in their browsers. This instantiation
of the injection weakness is most com-
monly referred to as cross-site scripting
(XSS). As observed in CWE-79 [4], the
structure of the dynamically generated
Web page is altered by sending code
(HTML and JavaScript) in through legiti-
mate user input channels to the Web appli-
cation.

We also discuss the application of the
injection semantic template to study arti-
facts related to a confirmed XSS vulnera-
bility (CVE-2007-5000, see [5]) in the
Apache HTTP Server project. For the
interested reader, we have previously elab-
orated on the buffer overflow semantic
template in [6].

Studying Software Vulnerabilities

There have been several research efforts to enumerate and categorize software weaknesses that lead to vulnerabilities. To con-
solidate these efforts, the Common Weakness Enumeration (CWE) is a community-developed dictionary of software weak-
ness types and their relationships. Yet, using the CWE to study and prevent vulnerabilities in specific software projects is dif-
ficult. This article presents a novel approach for using the CWE to organize and integrate the vulnerability information
recorded in large project repositories.

Dr. Robin A. Gandhi, Dr. Harvey Siy, and Yan Wu
The University of Nebraska at Omaha

 



Studying Software Vulnerabilities

September/October 2010 www.stsc.hill.af.mil 17

Building a Semantic Template
When it comes to security vulnerabilities,
we face an interesting paradox. On one
end, we are inundated with discovered vul-
nerability information from its detection
to its fix. On the other end, there is most
often a lack of security knowhow among
stakeholders in the SDLC. We realize that
during software development, especially in
the implementation stage, the details a
programmer has to remember to avoid
security vulnerabilities can be enormous.
The mere existence of long checklists and
guides (such as the CWE) is not enough.
To deal with enormous details, the use of
long checklists needs to be facilitated by
simple cognitive guides or templates.
Therefore, to effectively and quickly study
the large amounts of information associ-
ated with vulnerabilities, we ask the fol-
lowing four fundamental questions:
1. What are the software faults? In other

words, what are the concrete manifes-
tations of errors in the software pro-
gram and design related to omission
(lack of security function), commis-

sion (incomplete security function), or
operational (improper usage) cate-
gories that can precede the weakness? 

2. What are the defining characteristics
of the weakness? 

3. What are the resources and locations
where the weakness commonly oc-
curs? 

4. What are the consequences? In other
words, what are the failure conditions
violating the security properties that
can be preceded by the weakness?
Answers to these questions are highly

tangled in current CWE documentation.
For each major class of weakness (such as
injection), a large number of CWE cate-
gories can be identified to find answers to
these questions. As a result, a significant
amount of work is needed to identify the
trail of CWE categories such that the
chain of events that lead to a vulnerability
can be reconstructed. To facilitate such
analysis, the creation of a semantic tem-
plate can be viewed as a systematic process
of untangling the CWE categories and
their descriptions into different bins that

correspond to the four questions. We first
describe the preparation and collection
phase of building a semantic template.

Preparation and Collection
Phase
Selection of Content
Since the CWE is continuously evolving, it
is important to note that our template is
based on Version 1.6 [7]. The CWE uses
views to integrate multiple categorizations
of weaknesses that share several CWE
categories. We use the two most promi-
nent views of the CWE: the development
view (CWE-699) of CWE categories, suit-
ed for practitioners in the SDLC, and the
research view (CWE-1000), suited for
research purposes (as it has a deep and
abstract hierarchical structure).

Extraction of Relevant Weaknesses
The next step is to identify the CWE cat-
egory that identifies the weakness of
interest at the most abstract level. For the
Injection weakness, CWE-74 is such a cate-
gory [3]. Referred to as the root category,

CRLF = Carriage Return Line Feeds.
IS-A = Means that a is a subclass of b.
LDAP = Lightweight Directory Access Protocol.
URI = Uniform Resource Identifier.

INCOMPLETE

Figure 1: Injection Semantic Template



Game-Changing Tools and Practices

18 CROSSTALK The Journal of Defense Software Engineering September/October 2010

we start here and adopt four strategies to
gather weaknesses related to it in the
CWE development and research views:
1. Navigate hierarchical relationships of

the root category (Parent and Child Of ).
2. Navigate non-taxonomical relation-

ships such as Can Precede, Can Follow,
Peer-of in the CWE hyperlinked docu-
ment [7].

3. Keyword search on the CWE docu-
ment [7] for weaknesses that have the
injection weakness described in their
primary or extended description. Key-
word search is followed by exploration
of Parent, Sibling, and Child categories
of the discovered CWE category, for
relevance to the root category.

4. Visualization [8] of the root category
and its related weaknesses identified by
automatically parsing the CWE specifi-
cation available in XML [1].
While applying each strategy, use of

heuristics and some degree of judgment is
required on part of the subject matter
expert to include a CWE category into the
pool of relevant weaknesses. Details
about the CWE categories—discovered
by applying our strategies to gather weak-
ness related to the root category CWE-
74—can be found at <http://faculty.ist.
unomaha.edu/rgandhi/st/injectioncwe.
pdf>. Table 1 gives some summary statis-
tics roughly describing the scale of the

work involved. It speaks volumes about
the complexity of the mental model that
developers need to be aware of to under-
stand the consequences of their coding
and design decisions, such that injection
weakness can be avoided. Although hyper-
linked, navigating the CWE documenta-
tion and various graphical representations
is tedious and non-intuitive. While differ-
ent CWE views help to accommodate
multiple perspectives, it adds an additional
layer of complexity.

Template Structuring Phase
Separation of Tangled CWE
Descriptions 
In this phase, the descriptions of the set
of CWE categories from the previous
phase are carefully analyzed for their cor-
respondence to either a Software Fault that
leads to injection; defining characteristic
of the injection Weakness; Resource/
Location where injection weaknesses occur;
or Consequences that follow from a injection
weakness. After these parts have been sep-
arated and placed in appropriate bins,
well-formed and succinct concepts for the
injection semantic template are identified
in each bin. For example, by analyzing the
descriptions for CWE-74 in [1], the fol-
lowing concepts (shown in quotes) can be
systematically identified for each of the

semantic template conceptual units
(shown in bold).
• Software Fault: “Failure to sanitize

user input of syntax that has implica-
tions in a different plane.”

• Weakness: “Elements of user-con-
trolled data have implications in a dif-
ferent plane.”

• Resource/Location: “User con-
trolled input data.”

• Consequences: “Execution of arbi-
trary user-controlled data,” “Disclo-
sure of data and further exploration,”
“Unaccounted actions,” “Control of
authentication,” “Unauthorized data
recall and writing,” and “Change
process flow.”
While some of these concepts overlap

with the CWE-79, this category identifies
the following unique and more specific
concepts:
• Software Fault: “Failure to preserve

generated Web page structure,”
derived from CWE-79, is a more spe-
cific software flaw than a “Failure to
sanitize user input of syntax that has
implications in a different plane,”
which is derived from CWE-74.

• Resource/Location: “Web page”
(output that is served to other users),
which is a “User controlled input data”
that is addressed in CWE-74.

Filtering Concepts and Introducing
Abstractions
The CWE categories are class, base, or
variant weakness, with class being the
most general. Class weaknesses are de-
scribed in a very abstract fashion, typically
independent of any specific language or
technology. Base weakness is also de-
scribed in an abstract fashion, but with
sufficient details to infer specific methods
for detection and prevention of the weak-
ness. On the other hand, variant weak-
nesses are described at a very low level of
detail, typically limited to a specific lan-
guage or technology.

With the original intent of the seman-
tic template to make weakness more
understandable, we derive the primary
concepts for software faults and weakness
characteristics from the more general class
and base CWE categories—while preserv-
ing traceability to the CWE categories
(with more specific variants) using their
identifiers. This design decision was taken
primarily to avoid missing the forest for
the trees. We expect it to be easier for
developers to remember a more generic
model of the weakness rather than a
detailed one. However, in the case of the
Resource/Location conceptual unit, it is
not uncommon to extract concepts in the

Figure 2: Annotation of Information Pieces for Vulnerability CVE-2007-5000 with Concepts of
the Injection Semantic Template

Measures Value

Highest depth of the hierarchy among CWEs relevant to injection 4 (including root)

Average number of relationships (inward and outward) per CWE 1.6

Total number of relationships among CWEs relevant to injection 37

Total number of CWEs relevant to injection 46

Total number of pages in the CWE document relevant to injection 83

Table 1: Measures Related to the Collection of Injection Related CWEs Measures



Studying Software Vulnerabilities

September/October 2010 www.stsc.hill.af.mil 19

template from variant weaknesses. For the
Consequences conceptual unit, we have
discovered that the concepts extracted
from consequences listed for class and
base CWE categories provide comprehen-
sive coverage of consequences identified
from more specific-variant CWE cate-
gories.

Template Structuring and
Representation
In this sub-task, the identified concepts
for the template are structured and related
to each other based on the relationships
between their corresponding CWE cate-
gories. From this effort, a highly struc-
tured collection of interdependent con-
cepts emerge (as shown in Figure 1 on
page 17). Each concept in the semantic
template of Figure 1 includes numbers
that identify relevant CWE categories. The
semantic template reduces duplication of
content across related CWE categories
while putting them in the context of each
other.

Template Refinement and Tailoring
The template can be easily used to study
vulnerability information gathered from
multiple sources or reconstruct a success-
ful software exploit. Related to both
CWEs and CVEs, the Common Attack
Pattern Enumeration and Classification
(CAPEC) [9] provides a standard way to
capture and communicate the manner in
which software weaknesses can be exploit-
ed. They are stepwise operationalizations
of attacks against software systems. By
mapping specific vulnerabilities (CVEs)
and attack patterns (CAPECs) to the
semantic template, it is further refined and
checked for obvious omissions. In the fol-
lowing section, we describe such mapping
in the context of the XSS vulnerability
from CVE-2007-5000. We also expect the
semantic templates to be tailored for a
specific project, product, or organization.

Using the Semantic Template
to Study Vulnerabilities
We use the injection semantic template to
study the vulnerability information avail-
able from multiple project specific sources
for the reported XSS vulnerability CVE-
2007-5000 in the Apache HTTP server.
These sources include the CVE vulnera-
bility descriptions; media reports about
the vulnerability on the Apache HTTP
server project public Web site; change his-
tory in the open source code repository;
source code versions (before and after the
fix); and related CAPECs as test cases.
The semantic template allows us to anno-

tate the natural language vulnerability
descriptions in order to understand and
reconstruct the way the injection weak-
nesses occur. The semantic template also
allows extrapolating or identifying missing
information (if any).

The semantic template provides intu-
itive visualization capabilities for the col-
lected vulnerability information. In Figure
2, the vulnerability artifacts related to
CVE-2007-5000 are filled into the tem-
plate. A larger visualization can be found
at <http://faculty.ist.unomaha.edu/rgan
dhi/st/injectioncve.pdf>. Figure 2 pro-
vides an integrated view that shows how
developers can effectively reason about
why the vulnerability occurred; brain-
storm possible attack vectors (CAPECs);
and discuss the adequacy of performed
fixes. Stakeholders in the SDLC can con-
sume technical details with relative ease
and guided explanation.

We expect that over a collection of
CVE vulnerabilities in a particular project,
their mappings to specific weakness cate-
gories will reveal recurring error patterns
and provide project-specific measures for
identifying the most prominent CWE
weaknesses for which developers need
awareness and training.

Synergy with Other Security
Standardization Efforts
The semantic template provides a unified
view of software weaknesses (CWE),
actual vulnerabilities (CVE), and relevant
attack patterns (CAPEC) that can be used
to develop and prioritize risk-based test
cases for the most exploited software
flaws. Many source code static analysis
tool reports now provide explicit map-
pings from their error reports to CWE
and CVE identifiers. However, exploring a
CWE category and its related weaknesses
(with currently available textual and limit-
ed visualization formats) poses a signifi-
cant burden to the tool users. To this end,
the concepts in the semantic template
maintain explicit traceability to CWE
identifiers and hence can be used to pro-
vide an intuitive, visual, and layered expla-
nation to the tool user in the context of
the discovered flaw. The tool user can also

examine the fix information from past
vulnerabilities to determine the course of
action to take. In addition, mapping of
attack patterns (CAPECs) to software
faults in the semantic template provides
concrete scenarios to test and justify the
fix adequacy.

With the availability of the Malware
Attribute Enumeration and Characteri-
zation [10] standardization effort and its
mappings to the CWE, we expect to use
the semantic template to study what soft-
ware flaws most often contribute to suc-
cessful malware behaviors and CAPECs.
For example, the flaws that precede the
injection weakness would most likely con-
tribute to the success of malware behavior
for delivering a malicious payload.

Currently, the process of encoding the
known vulnerabilities and attack patterns
into the template is manually performed.
While manual population of templates is
scalable for recording of new vulnerabili-
ties as they are detected, relating past vul-
nerabilities with the templates requires
automation. An empirical study with the
Apache repository will be conducted to
assess the accuracy of this automated
process.

As part of our future work, we also
expect to build associations of the seman-
tic template with the Knowledge Discov-
ery Metamodel (KDM) [11]. The KDM
defines an ontology for software assets
and their relationships; this could be lever-
aged to describe the software faults and
resources in the semantic template using a
language-independent semantic represen-
tation. In turn, the semantic templates
could provide abstractions and visualiza-
tions to enhance the explanation of
KDM-based software mining results.

Conclusion 
The CVE grows by roughly 15 to 20 vul-
nerabilities every day. Each discovered
vulnerability produces several informa-
tion pieces extending from its discovery to
its fix. With over 600 entries and more
than 20 different views, the CWE pro-
vides a significant body of knowledge for
classifying and categorizing software
weaknesses. However, it is a difficult task

As the government and defense sector adopts standards for tracking and detecting
specific vulnerabilities, there is an urgent need for developers to build software arti-
facts to avoid weaknesses that cause vulnerabilities in the first place. Semantic tem-
plates have multiple usage scenarios in software assurance, such as to study past vul-
nerabilities in source code repositories, suggest test cases for a identified software
resource, elicit requirements for avoiding weakness, and provide intuitive explanation-
based guidance to developers when conditions that lead to weaknesses are detected.

Software Defense Application



Game-Changing Tools and Practices

20 CROSSTALK The Journal of Defense Software Engineering September/October 2010

About the Authors

Robin A. Gandhi, Ph.D.,
is an assistant professor
of information assurance
in the College of Infor-
mation Science and Tech-
nology at the University
of Nebraska, Omaha

(UNO). He received his doctorate from
The University of North Carolina at
Charlotte. The goal of Gandhi’s research
is to develop theories and tools for
designing dependable software systems
that address both quality and assurance
needs. Gandhi is a member of the DHS’s
Software Assurance Workforce Educa-
tion and Training Working Group.

Nebraska University Center for 
Information Assurance
College of Information Science 
and Technology (IS&T) 
6001 Dodge ST
PKI 177 A
Omaha, NE 68182-0500
Phone: (402) 554-3363
E-mail: rgandhi@unomaha.edu

Yan Wu is currently pur-
suing her doctorate in
information technology
at the UNO, and is
expecting to receive her
degree in Spring 2011.
The goal of her research

is to conduct empirical study on analyz-
ing software engineering knowledge in
order to support the development and
maintenance of reliable software-inten-
sive systems.

Department of Computer Science
College of IS&T 
6001 Dodge ST
Omaha, NE 68182-0500
E-mail: ywu@unomaha.edu

Harvey Siy, Ph.D., is an
assistant professor in the
Department of Compu-
ter Science at the UNO.
He received his doctorate
in computer science from
the University of Mary-

land at College Park. He conducts empir-
ical research in software engineering to
understand and improve technologies
that support the development and evolu-
tion of reliable software-intensive sys-
tems. Siy has previously held positions at
Lucent Technologies and its research
division, Bell Laboratories.

Department of Computer Science
College of IS&T 
6001 Dodge ST
PKI 281 B
Omaha, NE 68182-0500
Phone: (402) 554-2834
E-mail: hsiy@unomaha.edu

to use the CWE for conducting a system-
atic study of observed vulnerabilities.

This article describes a process to sys-
tematically study software vulnerabilities
using several software assurance commu-
nity standards. A semantic template
enables us to systematically assimilate the
information pieces related to a vulnerabil-
ity. This integrated information allows fun-
damental questions to be answered:
• How do software flaws lead to a vul-

nerability? 
• What are the consequences of exploit-

ing the vulnerability? 
• How were they exploited? 
• What resources were involved? 
• How were they fixed? 
• Are the applied fixes sufficient? 
• What project specific measures can be

produced for the CWE weakness cate-
gories that the vulnerability is related
to?

• How do the discovered vulnerability
and its fix revise our confidence in the
software system? 

• What other weaknesses still remain? 
• What steps should be taken to prevent

the vulnerabilities in general? 
• Can tools be optimized to look for the

discovered patterns?
Answering these questions is essential

for an organization to measure the effec-
tiveness of its secure software develop-

ment activities and justify the correspond-
ing assurance given to customers.u

Acknowledgement
This research is funded in part by
DoD/Air Force Office of Scientific
Research, National Science Foundation
Award Number FA9550-07-1-0499, under
the title “High Assurance Software.”

References
1. The MITRE Corporation. CWE–

Common Weakness Enumeration. 10 Apr.
2010 <http://cwe.mitre.org/>.

2. The MITRE Corporation. CVE–Com-
mon Vulnerabilities and Exposures. 10
Apr. 2010 <www.cve.mitre.org>.

3. The MITRE Corporation. CWE–
Common Weakness Enumeration. “CWE-
74: Improper Neutralization of Special
Elements in Output Used by a
Downstream Component.” 5 Apr.
2010 <http://cwe.mitre.org/data/def
initions/74.html>.

4. The MITRE Corporation. CWE–
Common Weakness Enumeration. “CWE-
79: Improper Neutralization of Input
During Web Page Generation.” 5 Apr.
2010 <http://cwe.mitre.org/data/def
initions/79.html>.

5. The MITRE Corporation. CVE–
Common Vulnerabilities and Exposures.

“CVE-2007-5000 (under review).” 9
Sept. 2007 <http://cve.mitre.org/cgi
-bin/cvename.cgi?name=CVE-2007
-5000>.

6. Wu, Yan, Robin A. Gandhi, and
Harvey Siy. Using Semantic Templates to
Study Vulnerabilities Recorded in Large
Software Repositories. Proc. of the 6th
International Workshop on Software
Engineering for Secure Systems (SESS
’10) at the 32nd International Confer-
ence on Software Engineering (ICSE
2010), South Africa, Cape Town. 2010.

7. Martin, Robert A. CWE Version 1.6.
The MITRE Corporation. 29 Oct.
2009 <http://cwe.mitre.org/data/
published/cwe_v1.6.pdf>.

8. Siy, Harvey. “Injection-Related CWEs
– Graph-Viz Visualization.” <www.cs.
unomaha.edu/~hsiy/research/zgrvie
w/injectionCWEs.html>.

9. The MITRE Corporation. CAPEC–
Common Attack Pattern Enumeration and
Classification. 18 May 2010 <http://
capec.mitre.org>.

10. The MITRE Corporation. MAEC –
Malware Attribute Enumeration and Char-
acterization. 10 Apr. 2010 <http://
maec.mitre.org>.

11. “KDM 1.1.” Object Management Group.
10 Apr. 2010 <www.omg.org/spec/
KDM/1.1>.


